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Dolphinfish (Coryphaena hippurus)
Rank 9: (Recreational Fishery)

The dolphinfish occurs worldwide in tropical and warm temperate scas in both oceanic
and coastal waters (Figure 25, McEachran and Fechhelm 2005). The dolphinfish ranks gt
in the recreational fishery with 2.3 million pounds (373,000 fish) landed annually. Only
about 4,200 fish are taken in Texas waters.
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Figure 25. Distribution of dolphinfish in the GOM. Source: NOAA (1985).

In pelagic regions, Coryphaena hippurus is commonly found near floating objects
apparently because its prey seek refuge under and within the flotsam (Palko, et al. 1982).
The dolphinfish is a relatively short-lived fish and are believed to live an average of two
years, and a maximum of five years (Beardsley, 1967). Females may spawn two to three
times per year and produce between 80,000 and 1,000,000 eggs per event. In waters above
34° C, larvac are found all year, with greater numbers detected in spring and fall. In one
study, 70% of the youngest larvac collected in the northern GOM were found at depths
greater than 180 meters (Ditty et al. 1994).

A full suite of life-history parameters has not yet been compiled for this species.
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Other Fishes
Rank 10: (Recreational Fishery)

The generic category “Other Fishes” ranks 10" in GOM recreationat fisheries in terms
of weight Over 1.9 million pounds are landed annual in the GOM (ex Texas). This
represents close to 1.6 million fish. Another 193,000 fish are landed in Texas. No CWIS
entrainment assessment can be made for this category.
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Anchovies (Engraulidae)
(Forage Fish)

Five species of anchovy have been confirmed to occur in the northern GOM and more
southerly species may temporarily move north under proper oceanographic conditions
(Hoese and Moore 1998, McEachran and Fechhelm 1998). The bay anchovy (dnchoa
mitchilli) and striped anchovy (4. hepsetus) are the most common species in the waters of
the northern Gulf (Hoese and Moore 1998). The bay anchovy is restricted to bays, inshore
areas, and coastal fresh to brackish waters. The striped anchovy is usually found farther
offshore than the bay anchovy. Fertilized eggs and larvae of all anchovy are pelagic.
Excluding small fisheries operating off the southern west coast of Florida, there are no
commercial or recreational fisheries for any anchovy species in the GOM (NMFS 2008a).
No species of sardine are reported in the NMFS Fisheries Statistics Division ST1 and
TDPW recreational fishery databases. Nevertheless, anchovies are considered to be an
integral component of the forage fish community.

In the GOM, scawater entrainment assessments associated with planned LNG facilities
have used the bay anchovy as a proxy species representative of all Engraulid taxa in the
Gulf (TORP 2006; USCG and MARAD 2005a, 2005b, 2006a, 2006b). Because anchovies
are not taken commercially or recreationally, entrainment losses have been evaluated based
upon total numbers of age-1 anchovies (all species combined) lost to entrainment relative
to the total forage fish population in the GOM (TORP 2006; USCG and MARAD 2005a,
2005b, 2006a, 2006b).

Life Stages, Daily Instantaneous Mortality, Stage Duration

¢®M (2005) first derived life-history parameter values based upon references to relevant
scientific literature (Appendix Table 1D9). We know of no information that would improve
on those estimates and will use them for CWIS entrainment analyses. The original ¢’M
(2005) life-history parameter values for bay anchovy have been used in all of the LNG
entrainment analyses in the GOM to date (e.g., TORP 2006; USCG and MARAD 2005a,
2005b, 2006a, 2006b).

Assessment

In the GOM, Engraulids spawn throughout the year with peak spawning occurring from
March through September (Ditty et al. 1988). Because SEAMAP sampling is conducted
primarily during the months of June through November there are no adequate SEAMAP
estimates of larval densities for the period December-May. To address this issue, USCG
and MARAD (2004), as amended by USCG and MARAD (2005} developed an approach
to CWIS Engraulid entrainment based upon monthly abundance data collected by Ditty
(1986) offshore Louisiana,

Ditty (1986} reported that the average monthly density of Engraulid larvae in the neritic
(continental shelf) waters of the Northern Gulf of Mexico for the period December-May
ranged from 1.6 to 193.8 larvae/100m’® with a period average of 55.3 larvae/100m’ (Table
26). For the period Junc-November, average monthly densities ranged from 0.8 to 598.1
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larvac/100m’ with a period average of 141.0 larvae/100m’. The ratio of the average larval
density from December-May to the average larval density for June through December
yielded a comparative ratio of 0.3922. This ratio is used to estimate Engraulids density in
the GOM for the period December-May when no SEAMAP sampling occurs: average
larval density for December-May equals 0.3922 times the observed average larval density
for the period June-November.

Table 27 lists all Engraulid taxa reported in the SEAMAP database. In the vast majority of
instances, larvae are identified only to the level of family. For each of the ichthyoplankton
tows in the SEAMAP database in which Engraulid taxa were present, all taxa were
incorporated into a single density value. For example, for any single tow, if the reported
density of Engraulidae was x larvae/m’, and the density of Anchoa spp. was y larvae/m®,
and the density of Engraulis eurystole was z larvae/m® (assume only three taxon reported),
then the density of Engraulids for that tow would be x + y + z larvae/m’.

Table 26. Reported average monthly densities (number/100 m) of Engraulids
reported by Ditty (1986).

Dec Jan Feb Apr May Average
4.0 1.6 2.9 1938 | 74.3 55.3

Jun Jul Aug Sep Oct Nov | Average
598.1 | 2134 3.0 27.6 3.3 0.8 141.0

Ratio of December-May to June-November = 0.3922

Table 27. Engraulid taxa reported in the SEAMAP database.

Taxon Common Name Tows
Engraulidae 3387
Anchoa spp. 161
Anchoa hepsetus Striped anchovy 31
Anchoa mitchilli Bay anchovy "
Anchoa lyolepis Dusky anchovy 4
Engraulis eurystole Silver anchovy 60
Anchoviella sp.’ 2
Anchoviella petfasciatus Flat anchovy 3

" Because there is only ane species of Anchoviella, all Anchoviella sp.
are actually A. perfasiatus.

Table 28 lists the larval densities of Engraulids (+ 95% CI) as derived from the SEAMAP
database for the period June-November and projected daily seawater usage by zone. Daily
entrainment is calculated for each zone by multiplying density times daily water usage rate
to yield daily entrainment. Daily entrainment rates are multiplied times the exposure period
of 182 days (Junc-November) to yield entrainment. Table 29 lists the larval densities for
the period December-May and projected daily seawater usage. Daily entrainment is
calculated for each zone by multiplying density times daily water usage rate to yield daily
entrainment. Total entrainment is calculated by multiplying daily entrainment rates times
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the exposure period of 183 days (December-May) and by the seasonal ratio 0.3922 derived
from Ditty (1986). Total entrainment for each season is then summed across all zones to
obtain total annual entrainment Table 30.

Table 28. SEAMARP larval densities (+ 95% CI) for Engraulids for the period June-November and
daily seawater usage estimates by zone. Daily entrainment is calculated by multiplying density
times daily water usage rate to yield daily entraimment. Daily entrainment rates are multiplied times
the exposure pertod of 182 days (June-November) to yield total entrainment. Shaded arca denoted
the only zones where future CWIS activity is projected.

Zone Larval Density {no./m3) L‘E}i{g; Daily Entrainment 83:' fgggggeg: g‘):'ggzﬂfg

Mean | LcL [ ucL ,513',(,'2;’) Mean | tcL | ucL | Mean | Lot | wcL
E1 | 23676 14159  3.3194 0 0 0 0 0 0 0
E2 | 03964 02395  0.5533 0 0 0 0 0 0 0
E3 | 01000 00581  0.1420 0 0 0 0 0 0 0
E4 | 00484 00027  0.0040 0 0 0 0 0 0 0
E5 | 0.0043 00000  0.0099 0 0 0 0 0 0 0
c1 | 98733 74086  12.6400 0 0 0 0 0 0 0
cz2 | 39281 34459  4.7103 0 0 0 0 0 0 0
C3 | 04901 03592 06211 0 0 0 0 0 0 0

-

~0odes. 00000

39846 28131 51561 0 0 0 0 0 0 0

6.0124 32330 87918 0 0 0 0 0 0 0

07518 05680 0

s
o
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Table 29, SEAMAP larval densities (+ 95% CI) for Engraulids covering the period December-May
and seawater usage estimates by zone. Daily entrainment is calculated by multiplying density times
daily water usage rate to yicld daily eatrainment. Daily entrainment rates are multiplied times the
exposure period of 183 days (December-May) and by the seasonal ratio 0.3922 derived from Ditty
(1986) to yield total entrainment, Shaded area denoted the only zones where future CWIS activity is

projected.
. Water Daily Entrainment Tolal Entrainment (Millions)
Zone Larval Density (no./m3) (UMS-:-QG (Millions) Over 183 Days of Exposure
ition
Mean | LCL | uCL m3iday) | Mean | LCL | ucL | Mean | LoL | ucL
E1 23676 14159 3.3194 0 0 0 0 0 0 0
E2 0.3964 0.2395 0.5633 0 G G 0 0 0 0
E3 0.1000  0.0581 0.1420 0 0 0 0 0 0 0
E4 0.0484  0.0027 0.0940 0 0 ¢ 0 0 0 0
ES 0.0043  0.0000 0.0099 0 0 o 0 0 0 0
G1 9.8733  7.1066 12.6400 0 0 0 0 0 0 0
c2 3.9281 3.1459 4.7103 0 0 0 0 0 0 0
C3 0.4901 0.3592 0.6211 0 0 0 Q 0 0 g
i

B0

2.8131
3.2330 0 4] G 0 0 [

LGL Ecological Research Associates, Inc.

114




Cooling Waler Intake Structure Biological Baseline Study

Table 30. Estimated annual entrainment of Engraulid larvae and eggs. Values
arc derived by multiplying Engraulid farval density times the egg to total larvae

ratio.

Total Enfrainment Over 365 Days of

Component Exposure
Mean LCL UCL
Larval Entrainment | 18,587,085 | 2.617,106 | 35,559,435
| Egg/Larval Ratio 0.3315 0.33156 0.3315
| Egg Entrainment 6,161,619 867,671 | 11,787,953

The egg ratio was calculated by dividing total average egg density across Zones (4,
CS, W4, and W5 by average total larval density (all taxa) across Zones C4, C5, W4, and
W5. The ratio for this case was 0.3315. This ratio was multiplied times total Engraulid
entrainment to yield total Engraulid egg entrainment. (see Table 30).

The number of age-1 equivalents was then calculated for the base, high-mortality, and
low-mortality life history values as described in Appendix Table D9 using the method and
data presentation format described by ¢’M (2005) (Tables 31-33). The number of age-1
equivalents represents the number of anchovy eggs and larvae lost to entrainment that
would have otherwise survived natural mortality during the first year of life (i.e., reached
the age of 1). The number of age-1 equivalents is then compared to the total forage fish
population in the GOM to determine the proportionate loss attributed to CWIS entrainment
(TORP 2006; USCG and MARAD 2005a, 2005b, 2006a, 2006b).
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Table 31. Age-1 equivalents for Engraulids using base life-history mortality estimates across all life

stages.
Natural Fishing Tolal
Stage lnstantang ous Duration (Days) Mortality Mortality | Mortality Fraction Surviving | Correction
Mortalily per per
per Stage
Stage Slage
Egg 1.044 1 1.0440 o 1.0440 0.3520 0.52076
Larvae 0.2059 34 7.0006 0 7.0006 £.0009 0.00182
Juvenile 0.004 330 1.3035 0 1.3035 0.2716
Total = 365 Total = 9.3481
Number Potentially Entrained Frag!ign Number Surviving to Age 1+
Stage Surviving
to Age 1
LCL Mean UCL LCL Mean UCL
Egg 2,617,106 18,587,085 35,559,435 | 0.000129 337 2,396 4,583
Larvae 867 571 6,161,619 11,787,953 [ 0.000495 429 3,047 5,830
Juvenile
Total = 766 5,443 10,413

Table 32, Age-1 equivalents for Engraulids using low mortality estimates across all life stages.

Natural Fishin'g Tota!
Stage Ens;:g:taar?ssus Duration (Days) Mortality MO;E;MV MOS::'W Fraction Surviving | Carrection
per Stage Stage Stage
Egg 0.69 1 0.6900 0 0.6900 0.5016 0.66807
Larvae 0.1804 30.63 5.5257 0 5.5257 0.0040 0.00793
Juvenile 3.004 333.4 1.3336 0 1.3336 0.2635
Total = 365 Total = | 7.549252
Fraction
Number Potentially Entrained Surviving Number Surviving to Age 1+
Stage 10 Age
LoL Mean ucL 1+ LcL  Mean UCL
Egg 2,617,106 16,587,085 35,559,435 | 0.000701 1,835 13,035 24,937
Larvae 867,571 6,161,619 11,787,853 | 0.002001 1,814 12,884 24,649
Juvenite
Total = 3,649 25919 48,586
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Table 33. Age-1 equivalents for Engraulids using high mortality estimates across all life stages

Natusal Fishing To!a!
Stage !nsﬁs&z?i?:us Duration (Days) Mortality Mopr;a: ity MOI;;]'W Fraction Surviving | Correction
per Stage Stage Stage
Egg 1.94 1 1.9400 0 1.9400 0.1437 0.25130
Larvae 0.231 34 7.8540 0 7.8540 0.0004 0.00078
Juvenile 0.01 330 3.3000 0 3.3000 0.0369
Tolal = 365 Tolal = 13.094
Fraction
Number Potentially Entrained Surviving Number Surviving to Age 1+
Stage 1
o Age
1+
LCL Mean UcCL LCL Mean UCL,
Egg 2,617,106 18,587,085 35,559,435 | 0.000004 9 67 128
Larvae 867,571 6,161,619 11,787,953 | 0.000029 25 176 337
Juvenile
Tolal = 34 243 465

The age-1 tables above were presented to maintain continuity with previous LNG
assessments in the GOM (USCG and MARAD 2003, 2004, 2005a, 2005b, 2006a, 2006b;
TORP 2006). Conceptually, using high mortality life-history values instills greater natural
mortality on eggs and larvae. The number of age-1 equivalents lost to entrainment is less
because a higher proportion of those eggs and larvae would have been lost to natural
mortality anyway. Conversely, using low mortality life-history values instills lower natural
mortality on eggs and larvac. The estimated number of age-1 equivalents lost to
enfrainment is higher for lower mortality life history data because a lower proportion of
those eggs and larvae would have been lost to natural mortality in the first place

We suggest that the use of low- and high-mortality lifc-history estimates may be
misleading and exaggerates projected impacts of CWIS entrainment. In the low mortality
case (sec Table 32), the two worst-case extremes (lowest natural mortality rate, lowest
stage duration) are used multiplicatively, Natural mortality (d") times stage duration in
days yield stage mortality. The lower the stage mortality the higher the proportion of
entrained larvae (or eggs) that arc considered lost to the environment as a direct impact of
the CWIS entrainment. In the cases above, lowering M from 0.2059 d' (base case) to
0.1804 d' (low mortality case) and simultancously lowering stage duration from 34 to
30.63 days results in a five-fold increase in the projected number of age-1 equivalents lost
to entrainment. That the two worst-case life-history estimates would co-occur naturally is
highly problematic. Unless there is direct evidence that such a situation can occur within
reasonable expectation, the base case model represents the best scenario for judging the
effects of CWIS entrainment.

Lastly, the projected losses of age-1 equivalents was compared to the projected
standing stock of forage fish in the GOM. The estimated total biomass of small pelagic
species (e.g., forage fish) in the GOM is 5,844,454,571 pounds (USCG 2005). Using a
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rough estimate of 0.0063273 pounds per forage fish (USCG 2005) yiclds a population
estimate of 923,688,551,357 forage fish in the GOM.

The projected percent loss for the base case, mean entrainment scenario was 5.893 E-7
(Table 34).

Table 34. Projected annual entrainment loss of Engraulids as a percent of
GOM forage fish (923,688,551,357).

Case LCL Mean LCL
Base 8.297E-08 5.893E-07 1.127E-06
Low 3.951E-07 2.806E-06 5.368E-06
High 3.708E-09 2.633E-08 5.038E-08
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Appendix A

Description of Methods for Analyzing SEAMAP Fish Larvae and Egg Data

LGL Ecological Research Associates, Inc.
1410 Cavitt Street
Bryan, Texas 77801

Updated: October 29, 2004
Data Tables
Three SEAMAP data tables are used together to analyze fish larvae and egg catch rates:

e STATCARD. This data table contains when and where sampling operations take
place. Fields relevant to these analyses include (note underscores “ * in field names
have been replaced by periods .

CRUISE.NO
VESSEL
P.STANO
S.LATD
S.LATM
S.LOND
S.LONM
S.STA.NO
MO.DAY.YR

WoNA AW

» ICHSTRWK. This data table contains information on the plankton samples taken at

each station. It contains all of the egg data. Fields relevant to these analyses are
listed below:

CRUISE.NO
VESSEL
P.STA.NO
SAMPLE.NO
GEAR.CODE
MESH.CODE
VOLFILT
NO.EGGS
EGGS.ALIQUE

o0 NG L s L R e
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o ICHSARWEK. This is the individual taxa data table. It contains information on each
individual fish larvae taxa collected in each sample. Relevant fields are listed
below:

1. CRUISE.NO
2. VESSEL

3. P.STANO

4. SAMPLE.NO
5. SAMP.STAT
6. TAXONOMIC
7. BIOCODE

8. MEAS

9. NOT.MEAS
10. ALIQUOT

Merging Data Tables

The STATCARD and ICHSTRWK data tables can be merged based on 3 fields,
CRUISE.NQ, VESSEL, AND P.STANO. To further merge the resuiting set with the
ICHSAR set, the SAMPLE.NO field must be included in the merge key.

Analysis Steps

The STATCARD data table, with its station time and place information is the core data
table for these analyses. The data table is read into a database file (R data.frame), where the
station latitude and longitude values are converted to decimal degrees, and the sample date
is used to create variables for sampling month and year. Next, the ICHSTRWK data table is
read into a database file (R data.frame), and restricted to records with GEAR.CODE equal
to 1 and MESH.CODE equal to 3, which represent the .333 m mesh, 60 cm Bongo net. At
this time we also convert the value for VOL.FILT from 9 to NA, to adjust for differences
in handling of missing data. [The NO>EGGS variable is also adjusted by the size of the
EGGS.ALIQU variable, multiplying subsampled aliquots by the appropriate value to set
them equal to 1/1 aliquots.]

Analysis Constraints. There are no year or month restrictions placed on the station data,
Stations were restricted to a somewhat arbitrary rectangle around the proposed site, with
the —93.65 and —92.834 degree longitude lincs making the vertical sides, and the 29.00 and
29.334 degree latitude lines making the horizontal sides. All stations that were outside of
the rectangle were eliminated.

Data Table Joins, At this point the station and ichstr data tables were merged using the
fields CRUISE.NO, VESSEL, and P.STA NO as the merge key.

LGL Ecological Research Associates, Inc. A-2
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Egg CPUE. Number of eggs per cubic meter of water filtered (Egg.cpue) are calculated for
each sample in the combined station-ichstr data table where the VOL.FILT variable is
greater than zero. The mean Egg.cpuc and 2 standard errors are then calculated to produce
the mean value with upper and lower confidence intervals.

Preparing the Fish Larvae Data Table. The ICHSARWK data table is read into a
database file (R data.frame), and is restricted to records containing a SAMP.STAT (sample
status) value of either 1 or 2 (the only values valid for quantitative analysis and summaries,
David Hanisko, NMFS, pers. comm.). The variables MEAS and NOT.MEAS are adjusted
to zero values where value in the record is —9, then they are added together to create the
total count variable, which is then adjusted by the ALIQUOT variable factor to represent a
whole sample. This database table is then merged with the station-ichstr data table using
the four variables, CRUISE.NO, VESSEL, P.STA.NO, and SAMPLE.NO as the merge
key.

Fish Larvae Summary Values. Total fish larvae catch for each sample is aggregated, and
divided by the sample VOL.FILT variable to create the sample catch per cubic meter of
water filtered (Fish.cpue). Then the mean Fish.cpue and 2 standard errors are calculated to
produce the mean value with upper and lower confidence intervals, both by month of
sampling, and for the overall peried.

Fish Larvae Individual Taxa Catch Rates. Calculating the catch per cubic meter of water
filtered for each taxa caught at anytime in the included samples requires construction of a
matrix with one record for cach taxa for each sampling record (total size of matrix will be
number stations X number of taxa). This data table is then merged with the data table
created above (station-ichstr-ichsar, which represents taxa actually caught at each sampling
station), and all records with missing values are set to a value of zero. The catch rate per
cubic meter of water filtered (Taxa.cpue) can now be calculated for each taxa for each
station. These data can be summarized to produce the mean cpue for each taxa along with
standard errors, so that upper and lower confidence intervals can be provided.
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Appendix B

Description of Methods for Analyzing SEAMAP Fish and Invertebrate Trawl Data
LGL Ecological Research Associates, Inc.
1410 Cavitt Street
Bryan, Texas 77801

Updated: F ebruary 26,2009
Data Tables
Two SEAMAP data tables are used together to analyze fish and invertebrate catch rates:
¢  GOMTrawlfix. This data table contains when and where sampling operations take

placc. Fields relevant to these analyses include (note underscores “_” in field names
have been replaced by periods “.”:

STATIONKEY
VESSEL
CRUISE
STATION
SEAMAP_NUM
DATA_SOURCE
START DATE |
TIME_ZONE |
START TIME
10. START LAT D

11. START LAT M

12. START LONG_D

13. START_LONG M

14, START _DEPTH

15. END_TIME

16. END_LAT D

17.END LAT M

{8. END_DEPTH

19. GEAR_CODES

20. SURFACE_TEMP

21. BOTTOM_TEMP

22. AIR_ TEMP

23. BAROMETRIC PRESSURE
24. WIND_SPEED

25. WIND_DIRECTION

26. WAVE_HEIGHT

A Al b
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27. SEA_CONDITION
28. VESSEL_SPEED
29. SHRIMP_STATION
30. TOW_NUMBER
31, NET_NUMBER

32. GEAR_TYPE

33. GEAR_SIZE

34. MESH_SIZE

35. MINUTES_FISHED
36. WATER_COLOR
37. BOTTOM_TYPE

e (GOMCatchnoq. This data table contains information on the plankton samples taken
at cach station. It contains all of the egg data. Fields relevant to these analyses are
listed below:

CATCHKEY
STATIONKEY
VESSEL

CRUISE

STATION

TAXON
TOTAL_NUMBER
TOTAL_WEIGHT

b S el

Merging Data Tables

The GOMTrawlfix and GOMCatchnoq data tables can be merged based on 3 fields,
CRUISE, VESSEL, and STATION. To further merge the resulting set, the STATIONKEY
field must be included in the merge key.

Analysis Steps

The GOMTrawlfix data table, with its station time and place information is the core data
table for these analyses. The data table is read into a database file (i.e.,dbf), where the
station latitude and longitude values are converted to decimal degrees. The database file is
converted to a shapefile for GIS analysis. The records are restricted to VESSEL equal to 4,
GEAR_SIZE equal to 40 (feet), and MESH SIZE equal to 1.63 (mm). Next, the
GOMCatchnoq data table is read into a database file (i.e.,dbf) and converted into a GIS
shapefile, and restricted to records with Vessel equal top 4 (Oregon 11). A 10 minute x 10
minute grid was created to cover the arca trawled. MINUTES FISHED was converted into
hours and summed for each 10 minute x 10 minute cell providing trawl effort per cell.
TOTAL_NUMBER of individuals was also summed for each cell for each species
analyzed. For each species, mean catch per unit Effort (CPUE) was calculated by dividing
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the sum of the TOTAL NUMBER of species per cell by the sum of effort trawled (in

hours) per cell.
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Appendix C

Development Scenario for Future Cooling
Water Use by New Offshore Facilities in the
Gulf of Mexico — Prepared by the Offshore
Operators Committee Cooling Water Intake
Structure Technical Steering Group

March 2009
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Development Scenario for CWIS Source Water
Biological Bascline Characterization Study
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Objective

The objective of the development scenario is to provide the basis for estimating water use
from regulated cooling water intake structures apportioned among the set of fishery zones
(Figure 1) devised for entrainment assessment. This development scenario document
recommends a base case of industry activity for assessment of entrainment by new facilities
and also provides data for possible consideration of alternative scenarios.

/ ; I — — Kilomelers
1 - {5 ) 2 0 50100 200 300 400

Figure 1. Zones for fishery data and water-use assessment. The depth limits of the zones 1
through 5 correspond, respectively, to 0-20 m, 20-60 m, 60-200 m , and 200-1000 m, and
>1000 m (deep GOM).
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Recommended Base Case Development Scenario

Data on the average intake flow rates of various facilitics and estimates of the intensity and
geographic distribution of industry activity were used to prepare a recommended base case
scenario for the estimation of additional seawater intake by regulated facilities (Table 1)
that would begin operation by the end of 2011, This time period was chosen so that only
integer numbers of facilities would have to be considered.

The remainder of this document discusses the data and rationale used to develop the base
case development scenario.

Table 1. Base Case Seawater Use Scenario — Additional Water Use 2009-2011

Production Facilities Drill Ships Scmins;lgrgcl:j‘sihle Jackup MODU
Fi;{l::: ¥ Total Fotal Total Fotal

Nuntber \Tﬂ? Number “{i:r Number \T}f:r Number \’:"Jast:r

(MGD) (MGD) (MGD} (MGD)

Cl 0 0 0 0 0 0 0 0
c2 0 0 0 g 0 0 0 g
C3 0 0 0 0 0 0 0 0
4 2 7 0 0 1 8 0 g
Cs 5 55 5 180 1 8 0 0
El 0 0 Q o 0 0 0 0
E2 0 g 0 0 \; 0 0 0
E3 0 0 G 0 \; 0 0 0
E4 0 0 0 0 0 0 0 0
ES 0 0 \; 0 0 0 0 0
Wi 0 0 0 0 0 0 0 0
w2 ¢ g 0 0 0 0 0 0
w3 0 0 0 0 Q 0 0 0
w4 1 4 0 0 0 0 0 0
W5 1 11 1 36 0 0 0 0

Geographic Distribution of Industry Activity

Since drilling or production activities must take place in leased arcas, the distribution of
active leases will provide the base case information for the distribution of industry activity
in the various fishery zones. A count of the active leases (Table 2) shows that leasing
activity is concentrated in the Central and Western fishery zones, with the deeper water
zones (W3-W5 and C3-C5) accounting for 65% of the total leased blocks.

Table 2. Distribution of Leases in the Fishery Data Zones in the Guif of Mexico
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i N r Number of .
Fishery E:::i Bolfc::-ﬁtsa' Active Fraction of
Data (Active and Non- Lease ACt"’eu
Zones Active) Blocks Leases (/0)

Qutside

fishery

Zones 73

C1 1312 1016 129
C2 1608 950 121
C3 1100 668 85
C4 1381 926 117
Cs 7192 2390 D3
E1 1144 0 5.0
E2 3092 2% 0.3
E3 2131 11 o1
k4 1801 50 0.7
ES 3140 78 04
W1 406 212 57
w2 1414 433 55
W3 792 163 21
w4 859 301 38
W5 1645 707 9.0

Water Use By Drilling Rigs and Production Facilities

Data on water use by offshore facilities was collected from comments submitted during the
Clean Water Act Section 316b Phase IlI rulemaking and from information submitted by
QOC member companies. OOC member companics were asked to submit information on
existing production facilities that use more than 2 million galions per day (MGD) seawater
with more that 25% of that used for cooling. The CWIS monitoring requirements apply
only to new facilities. Existing facilities arc not subject to baseline study or entrainment
monitoring requirements. However, information on seawater intake rates was collected to
identify facilities that might be used as surrogate (i.c. surrogate for yet-to-be-built new
facilities) study sites for entrainment monitoring as well as to characterize seawater intake
rates for larger production facilitiecs. The information from both these sources is
summarized in Table 3. In the few cases where companies provided information on both
maximum and typical daily intake volumes, the typical intake volume was used. Data on
production platforms should be considered to be representative only of large offshore
production facilities.
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Table 3. Seawater Intake Rates for Drilling Rigs and Large Production Facilitics

Facility Seawater Intake Rate (MGD)
Facility C?;”t
Type Intake Median Min Max Avg
Data

Production
Platform 44 4.6 00| 584 6.3
Jackup Drill Rig 24 6.8 4.2 9.2 6.5
Semisubmersible
Drift Rig 11 6.8 0.9 18.0 7.7
Drill Ship 6 40.1 10.0 | 52.0 36.1

Geographic Distribution of Production Facilities

Production facility scawater intake data submitted by OOC Member Companics show that
although facilities using >2 MGD of seawater can be found in any depth range, facilities
are found predominantly (75%) in waters > 200m deep (Table 4). Seawater intakes using
>5 MGD are only found in waters >200 m deep. These data are consistent with the
expectation that new facilities with large cooling water intakes will be constructed mainly
in deeper waters, where the cost of structures provides a strong motivation for the use of
hub facilities that process oil and gas from a number of fields. All current production
facilities are located in the Western and Central fishery data zones.

Table 4. Distribution of Production Facility Seawater Intakes by Fishery Zone Depth

Production Fagilities Production Facility Seawater Intake Rates

Fishery (MGD)
Zone Depth Median Average
{m) Number Facilities Usage {mg d% min max
(mgd)

0-20 3 0.07 1.7 1.6 0.4 28
20-60 3 0.07 0.8 2.8 0.7 6.9
60-200 5 0.11 1.7 2.8 0.9 5.0

200-1000 16 0.36 2.8 3.5 0.3 7.2
>1000 17 0.39 6.5 11 1.9 584

MMS data on production hub facilities, which process fluids from a number of offshore
fields, provide another way of looking at the distribution of facilities that are likely to have
seawater intakes in the >2 MGD range. Based on MMS data (MMS, 2008) existing hub
facilitics arc concentrated inside the 300 m isobath with new facilities expected 450 — 2300
m depth range (Figure 2, MMS (2008)).
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DEEPWATER GULF OF MEXICO 2008: AMERICA'S OFFSHORE ENERGY FUTURE
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Deepwater facilities that currently act as a hub
S TLE, MILE, WP D or hgve the potential lo act as a hub.
® Other (compliant tower, o
’ Future deepwater facilities that will have the
FPS, FPSO, FPU, fixed potential to be used as a hub once they are installed.
platform, or semisubmersible)

Figure 2. Current and future hub facilities in the Gulf of Mexico (MMS, 2008).

Number of New Production Facilities Per Year

New facilitics subject to CWIS regulations will be added as new Gulf of Mexico resources
are put into production. The number of new production facilities is highly dependent on
the economic climate and oil prices both of which have recently deteriorated. For the
purposes of entrainment assessment, we will use estimates of new facility installations
developed by the Minerals Management Service. Given that industry information about
planned new investments is often confidential, the MMS estimates represent the most

practical approach to estimating the number of facilities that will start production.

The Minerals Management Service (MMS, 2000) estimated that an average of 2 major

deepwater production facilities would be commissioned every year Table 5) .
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Table 5. Estimated Startups of Deepwater Production Facilities (MMS, 2000)

Fixed
Year TLP Spar Platform Total
2000 1 3 4
2001 2 2
2002 I 1 1 3
2003 1 1 2
2004 1 1 2
2005 1 1
2006 1 1 2
2007 1 1

A later study (MMS, 2008) estimated that an average of 7 projects per year would begin
production between 2006 and 2013. Considering that not all new fields will result in the
installation of separate production facilities, we will conservatively assume a base case of 3
production facilities per year will start operation for a total of 9 by the end of 2011. The
locations of the facilities will assigned to depth zones 4 and 5 in proportion to the number
of active leases in these zones. The average seawater intake rate for each depth zone
(Table 4) will be used as the base case.

Water Use by Drilling Rigs

Information on the water depth capabilities of the Gulf of Mexico drilling rig fleet was
obtained from the publicly available Rigzone database (www.rigzone.com). Based on this
information (Table 6) we can develop water depth assumptions for the operation of
different types of drilling rigs. Drillships are assumed to operate only in depth zone 5
(>1000 m). Semisubmersible drilling rigs arc assumed to operate in zones 4 and 5. Jackup
drilling rigs are assumed to operate in depth zones 2 and 3.

New drilling rigs, i.e. rigs for which construction started after July 17, 2006, that enter the
GOM fleet are subject to CWIS requirements. Rigzone was commissioned to query their
proprictary database for information concerning the expected delivery of new drilling rigs
to the GOM flect. This query revealed (Appendix A) that by the end of 2011, 7 drillships
and 10 semisubmersibles will enter service in the GOM fleet. Six of the drillships and two
of the semisubmersibles are subject to CWIS requirements. The Rigzone study concluded
that it was unlikely that any new-built jackup drilling rigs would enter the Gulf of Mexico
fleet by the end of 2011.

The water use of these rigs was divided among the longitudinal zones (i.e. W, C, and E) in
proportion to the number of active leases in each zone (Table 2) subject to the restriction
that the number of drilling rigs assigned to a zone must be an integer. None of the castern
(E) depth zones accounts for more than 0.7% of the active leasc blocks. As a result, the
water use by regulated CWIS on drilling rigs was assumed to be zero for all the E depth
zones.
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Table 6. Summary of the Gulf of Mexico Drilling Rig Fleet

GOM Rig Fleet Water Depth Information (m)
Under
Tvne of In Use | Construction ]
}E- February | for GOM C'Tmfemb Cl.m.emb Rating® | Rating °
12 Total # Drilling” | Drilling
2009 (February MIN MAX MIN MAX
# 2009)
#

Jackup | 77 45 0 11 82 38 137
Drill
Ship 6 6 7 1271 2127 3049 3049
Semisub_| 27 24 6 215 2475 610 3049

a.  The Rigzone study (Appendix A) concluded that although scven jackups are under construction at U.S. GOM shipyards, all of
them are likely to leave the region when they are completed.

b, Current drilling is the depth at which a rig in use in February 2009 was drilling. Based on information in the publicly
available Rigzone.com database.

c.  Rating is the maximum water depth capability of a drilling rig. Based on information in the publicly available Rigzone.com
database.
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Appendix

Gulf of Mexico Newbuild Drilling Rigs and Fleet Size Changes
Prepared by Rigzone.com

March 18, 2009
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RigLogix

upsiream infelligence syslem

Gulf of Mexico

Newbuild Rigs and Fleet Size Changes
Created March 18, 2009

This report, commissioned by Offshore Operators
Committee (OOC), provides analysis and data regarding
changes in the size of the jackup, semisubmersible, and
drillship fleets in the Gulf of Mexico, with a focus on
newbuild rigs that have and will enter the region during
the period 2004 to 2014.
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Introduction and Summary

The National Pollutant Discharge Elimination System (NPDES) permit for the Western and
Central Portions of the Gulf of Mexico (EPA, 2007) requires, under the Clean Water Act
Section 316 (b) Phase 11I regulations, that operators of new facilities with cooling water
intake structures (CWIS) that take in more than 2 million gallons per day of seawater with
more than 25% of that used for cooling water to undertake source water biological baseline
surveys. As defined by the permit, a new facility is one for which construction started after
July 17, 2006.

The permit provides operators with the choice of either doing individual site-specific
studies to meet some of the permit CWIS requirements or participating in a joint industry
study, conducted under a plan to be approved by EPA Region 6, aimed at meeting the
requirements, The Offshore Operators Committee (OOC) Environmental Sciences
Subcommittee (OOC-ESC) has organized the OOC Cooling Water Intake Structure JIP to
address CWIS permit requirements through the joint industry study option. The JIP is
reviewing drilling rig and production facility data to estimate the number of cooling water
intake structures subject to permit requirements and their respective water intake volumes.

0O0C contracted with Rigzone to review the proprietary RigLogix database to estimatc the
number of new drilling rigs that would enter the Guif of Mexico flect over the previous five
years and in the next five years. The purpose of this review is to provide the basis for
predicting cooling water use by drilling rigs with cooling water intake structures (CWIS)
subject to the CWIS requirements.

The conclusions of this review are as follows:

¢ It is unlikely that any new jackup drilling rigs will enter the GOM fleet by year end
2011.

e Ten newbuild semisubmersible drilling rigs will enter service in the Gulf of Mexico
fleet by year-end 2011. Construction of two of these rigs started after July 17, 2006
(Table 1 making them subject to the CWIS regulation.

o Seven newbuild drill ships will enter service in the Gulf of Mexico by year end 2011,
Six of the newbuild drill ships were started after July 17, 2006 (Table 1) and are thus
subject to CWIS requirements.

Gulf of Mexico Drilling Rig Fleet

In this report, Rigzone addresses the changes in the number of jackups, drillships and
semisubmersible rigs working in the Gulf of Mexico over the previous five years and in the
next five years. The Offshore Operators Committee commissioned Rigzone to summarize
the information according to data gathered in the company’s proprietary RigLogix
database, which tracks the offshore rig fleet worldwide.
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Cooling Water Intake Structure Biological Baseline Study

Rigzone and its predecessor companies have been tracking the offshore drilling rig fleet
smce 1990, and as such the Rigl.ogix database is one of the most comprehensive and
detailed rig databases available anywhere in the world. The system includes detailed
specifications for more than 1,200 offshore drilling rigs with additional details on their
locations, status, and contracts since 2000. This covers both rigs that are currently in
service, as well as those that are being built. This system is used by hundreds of offshore
operators, service companies, oilficld equipment manufacturers, insurers, financial analysts
and other companies to keep track of offshore drilling activity and to help them plan for
changes in the market.

Newbuild Rigs Entering the US Gulf of Mexico Between 2004 and 2009

In the last five years, six newbuild jackups entered the GOM within a year of leaving the
shipyard, With water depth capacities ranging from 300 to 550 feet, all of these newbuilds
were managed by Rowan. While three of the jackups are still located in the US GOM, three
have moved on to other areas worldwide.

Additionally, three newbuild semisubs entered the US GOM in the last five years, and all
of them continue to work in the region. Delivered in carly 2005, two of the newbuild
semisubs are rated for water depths reaching 7,500 feet deep; while the other semisub was
delivered in February 2008 and is rated for 10,000 feet of water.

In the last five years, one newbuild drillship was delivered to the GOM within the first year
of leaving the shipyard. Capable of drilling in waters measuring 10,000 feet deep, the Stena
DrillMAX was delivered to Repsol for work on Keathley Canyon in January 2008; and the
drillship has since moved on to work for Petrobras offshore Brazil.

In all these cases, the existing rigs leaving the US Gulf of Mexico more than offset the
newbuilds entering the region. As such, the number of rigs of all three types in the GOM
has declined since 2004.

Future Size of the Jackup Fleet

Currently the Gulf of Mexico jackup rig fleet is undergoing the largest and most long-
lasting contraction that it has experienced at any point since the industry downturn of the
mid-1980s. Looking back over the last 18 years, the period from 2001 through 2009 has
witnessed a 90 rig reduction in the overall jackup fleet size as the number of rigs in the
region has fallen from 164 to 74 rigs at the end of February 2009. The chart below
illustrates the contracted and total number of jackup rigs in the US Gulf of Mexico during
that time period (see “XOM Jackup Util 1990-2009.x1s” for supporting data).
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With regard to the reduction in the Gulf of Mexico jackup fleet, the losses that the fleet has
experienced over the last cight years arc largely the result of stronger demand in other
regions of the world coupled with the inherent dangers of operating drilling rigs in the Gulf
of Mexico. In particular, Hurricanes Ivan, Katrina, Rita, and Ike combined to destroy a
total of 11 jackups while sending many more to the shipyards for extensive repairs. This
risk combined with the lucrative long-term contracts to be found in other regions,
particularly the Persian Gulf, has driven many rig managers to relocate their jackups to
other regions.

Given the unprecedented contraction and historically low utilization rates for jackup rigs in
the US Gulf of Mexico, there is very little chance that the jackup rig fleet will expand at
any point during the next several years. In fact, by the end of 2009, six more active jackups
are expected to leave the US Gulf of Mexico for Mexico, Canada and the Mediterranean.
The seven jackups that are under construction at shipyards on the US Gulf Coast are not
contracted yet, but are all likely to leave the region when they are completed. If these rigs
do not land contracts, then they may stack at ports along the US Gulf Coast.

Conclusion: Expected Growth in Total Jackup Fleet By Year End 2011: -13 rigs or
more
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Future Size of the Drillship Fleet

During the month of February 2009, a total of five drillships were actively working in the
US Gulf of Mexico. This represents a slight decline over the average of six drillships
working in the region during the previous four years, and it is well below the peak of 9 rigs
in the region during Q2 2004,

Over the course of the next 2 years, seven newbuild drillships are contracted to enter the
US Gulf of Mexico. In addition, Transocean’s Deepwater Pathfinder is scheduled to move
into the US GOM from West Africa during March 2010 for a 5-year contract with ENI.

One active drillship, Transocean’s Discoverer Enterprise, is contracted through the end of
2010 for work in the US Gulf of Mexico, after which time it is likely to leave, although the
possibility remains that the rig might have its contract extended. That results in a net
increase of seven drillships working in the Gulf of Mexico over the next two years. Please
see “XOM Driliship Util 2004-2014.x1s” and “Gantt — GOM DS SS — 2009-2014.xIs” for
details.

Conclusion: Expected Growth in Total Drillship Fleet By Year End 2011: +7 rigs
Future Size of the Semisubmersible Fleet

During February 2009, a total of 27 semisubmersible rigs were in the waters of the US Gulf
of Mexico, of which 24 were under contract for work. This is just below the average of 25
rigs under contract in the region seen over the previous five years, and it is 20% below the
peak of 30 semisubs contracted in the GOM which was seen in June 2007.

By mid-2010 a total of nine new deepwater semisubmersible rigs are contracted to move
into the Gulf of Mexico. In addition, one further semisub, the ENSCO 8503, is scheduled
to arrive in the US GOM during 2011 to make a total of ten newbuild semisubs moving
into the region within the next two years.

On the other hand, three semisubs currently in the US GOM are scheduled to leave the
region this year. A further five semisubs in the US Gulf of Mexico have contracts ending
by April 2010. Of these five rigs with expiring contracts, four belong to Diamond Offshore
which has contracted similar rigs to start work in 2009 for OGX offshore Brazil.

Therefore, it would not be surprising to see some or all of these rigs move to other regions.
A conscrvative assumption would be that two or three of them will leave the GOM for
work clscwhere. However, probably the most likely scenario for these rigs is that most of
them will not land new contracts and end up stacking in the Gulf of Mexico waiting for
higher levels of rig demand.

As such, the total reduction in the number of semisubs in the Gulf of Mexico would be at
least three but likely four or five. Combined with the ten incoming newbuild
semisubmersibles, the Gulf of Mexico should sec a net increase of six semisubs.
Conclusion: Expected Growth in Total Semisub Fleet By Year End 2011; +6 rigs
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Summary of New Drilling Rigs Entering The Gulf of Mexico Fleet by 2011

The cooling water intake structure requirements apply only to facilities for which
construction started after July 17, 2006. Table 1 summarizes the contruction start dates

and anticipated delivery dates for drilling rigs expected to enter the Gulf of Mexico fleet by
year-end 201 1.

Table 1. Construction Start and Delivery Dates for Semisubmersible Drilling Rigs and

Driliships

Started Delivery
Type of Rig (Mon-YY} {Mon-YY) Rig Owner Rig
Drillship March-06 July-09 | Transocean Inc. Biscoverer Clear Leader
Dyillship June-08 July-08 | Transocean Inc. Discoverar Americas
Drillship September-06 March-10 | Transocean Inc. Discoverer Inspiration
Brillship April-07 April-10 | Pride international Pride Drillship TBN 1
Driliship June-07 January-10 | Frontier Brilling AS Bully 1
Driliship July-07 September-10 | Pride International Pride Drillship TBN 2
Driliship December-07 June-11 1 Vantage Energy Services Titanium Explorer
Semisubmersible January-02 July-07 [ Noble Drilling Noble Danny Adkins
Semisubmersible January-02 April-10 | Noble Driliing Nobte Jim Day
Semisubmersible May-05 Aprit-09 | Maersk Dritling Maersk Developer
Semisubmersible August-05 May-09 | Larsen Q&G PetroRig |
Semisubmersible September-05 April-09 | ENSCO ENSCO 8500
Semisubmersible January-06 September-08 | ENSCO ENSCO 8501
Semisubmersible March-06 June-09 | Transocean Inc. GSF Development Driller 11
Semisubmersible March-06 March-10 | Saipem Scarabeo 9
Semisubmersible September-08 April-10 | ENSCO ENSCO 8502
Semisubmersible June-07 November-10 | ENSCO ENSCO 8503

Reference

EPA(2007); "[FRL-8323-5] Notice of Final NPDES General Permit; Final NPDES General
Permit for New and Existing Sources and New Dischargers in the Offshore Subcategory of
the Oil and Gas Extraction Category for the Western Portion of the Outer Continental Shelf
of the Gulf of Mexico (GMG290000) ¢, 72 Federal Register 109 pp 31565-31578 Accessed
at hitp://epa.gov/regiont/water/npdes/genpermt/index. htm#GeneralPermit on 10/29/07
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Appendix D

Life-History Summary Tables
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Table D1. Stage, stage duration, and estimated mortality rates for brown shrimp. See text for additional

information,

Stage Variable

Case

Value

Comments

Eggs Daily
Instantaneous
Mortality
(Md")

Base

Low

High

1.8971

1.8971

1.8871

Reitsema et al. (1982) reported brown
shrimp that averaged 192 mm T.L.
released an average of 246,000 viable
eqys of which 15% hatched (S = 0.15), M=
-In {S)or 1.8971 d™.

As ahove.

As above.

Stage
Duration
(Days)

Base

Low

High

0.67

0.58

0.75

Eggs are demersal and hatch within 24-h
after release (Pattillo and Czapla 1997 and
references therein). Cook and Lindner
(1970) note that in the laboratory the eggs
usually hatch within 14 to 18 h. 16 h is the
median which is 0.67 d.

Low end of the 14-18 h hatch time given by
Cook and Lindner {1970).

High end of the 14-18 h hatch time given by
Cook and Lindner (1970).

Larvae Daily
Instantaneous
Mortality
(Md’)

Base

Low

High

0.1308

0.1308

0.1308

Cook and Murphy (1966) reported that 219
of 1,200 brown shrimp larvae feed on
diatoms during early development and
brine shrimp at later stages survived to the
last mysis stage which occurred 13 days
after the start of the experiment. S= 219 +
1,200 = 0.1825; M = -in (8) = 1.7010. Daily
value = 1.7010 + 13=0.1308 d™.

As above,

As ahove.

Stage
Duration
(Days)

Base

Low

High

13.33

10.42

25.25

As reported {13 d) by Cook and Murphy
(1966) based upon laboratory studies.
Added 0.33 to make the egg and larval
stages a total of 14 days.

Lassuy {1983a) and references therein
report larvae pass through & naupliar, 3
protozeel and 3 mysis stages overa 10 to
25 day pericd before transforming into
postlarvae. Added 0.42 to make egg and
larval stages & total of 11 days.

See above. Added 0.25 to make egg and
tarval stages a total of 26 days.
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Table D1. Continued.

Stage Variable Case Value Comments
Early Post Daily Base 0.0113 Total stage mortality of 1.7 reported by
Larvae Instantaneous EPA (2002) based upon Costelio and Allen
Mortality {1970). Total stage duration is estimated at
(Md™ 151 d {below). M= 1.7 + 151 = 00113 d™".
This stage occurs during fall and winter
when temperatures are low and growth is
stow but survival is high. Post larvae may
spend extensive time burrowed in the
sediments.
Low 0.0113 As above.
High 0.0113 As above.
Stage Base 151 Extended duration of the early postlarvae
Duration stage based on Temple and Fischer {1967)
{Days) and offshore abundance of this stage as
reported in the LOOP studies (Sasser and
Visser 1999).
Low 151 As above.
High 151 As above.
Late Post- Daity Base 0.0320 Minello et al. (1989) based upon the
Larvael/Early Instantaneous average of four cohorts in a Galveston Bay
Juvenile Mortality salt marsh.
(Md?)
Low 0.0234 Lowest cohort value observed by Minello et
al. (1989).
High 0.0554 Highest cohort value observed by Minello
et al. (1989).
Stage Base 61 Based upon the average of the maximum-
Duration minimum size at the end and start of the
(Days) cohort analysis conducted by Minelio et al,
(1989} divided by an estimated growth of 1
mmyday.
Low 47 Minimum value derived from the Minello et
al. (1989) study.
High 72 Maximum duration derived from the et al.

(1989) study.
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Table D1, Continued.

Stage Variable

Case

Value

Comments

Sub Daily
Adult/Adult Instantaneous
Mortality
(Md)

Base

Low

High

.0.0092

0.0067

0.0117

Shrimp stock assessment base value (pers.
comm., J. Nance, NOAA/NMFS, Galveston
Laboratory, TX).

Lower end of range in shrimp stock
assessment (pers. comm., J. Nance,
NOAANMFS, Galveston Laboratory, TX}.

Upper end of range in shrimp stock
assessment {pers. comm., J. Nance,
NOAA/NMFS, Galveston Laboratory, TX).

Stage
Buration
{Days)

Base

Low

High

138

156

116

Balance of year given the above durations
of eartier life stages.

Balance of year given the above durations
of earlier life stages.

Balance of year given the above durations
of earlier life stages.

Total
Subadul¥/
Adult
Fishing
Mortality

Base

Low

High

1.3839

1.1323

1.4793

Ratio of F:M based upon Gazey et al.
(1982a, b) = 0.0279 + 0.0256 = 1.09. M=
daily instantaneous mortality (0.0092) x
stage duration {139 days) = 1.2788. F =
1.09 (M) = 1.3939.

Ratio of F:M based upon Gazey et al.
{1982a, b) = 0.0279 + 0.0256 = 1.09. M=
daily instantaneous mortality (0.0067}) x
stage duration (156 days) = 1.0452. F =
1.09 (M) = 1.1393.

Ratio of F:M based upon Gazey et al.
(1982a, b) = 0.0278 + 0.0266 = 1.09. M=
daily instantaneous mortality (0.0117) x
stage duration (116 days) = 1.3572. F =
1.09 (M) = 1.4793.
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Table D2. Stage, stage duration, and estimated mortality rates for white shrimp. See text for additional

information.
Stage Variable Case Value Comments
Egas Daity Base 1.8971 As per brown shrimp (Gallaway 2005).
Instantaneous {Although spawning occurs in the water
Mortality column, white shrimp eggs sink to the
M d'1) bottom. Ensuing larval stages are
planktonic.)
Low 1.8971 As above,
High 1.8971 As above.
Stage Base 0.46 Klima et al. (1982} reported that eggs hatch
Duration into planktonic nauplii larvae within 10 to 12
{Days) hours after fertilizatlon. Mean duration =
0.46d.
Low 0.42 Low end of the 10-12 h hatch time given by
Klima et al. (1982).
High 0.50 High end of the 10-12 h hatch time given by
Klima et al. {1982).
l.arvae Daily Base 0.1308 As per brown shrimp (Gallaway 2005).
Instantaneous
Mortality
(Md”)
Low 0.1308 As above.
High 0.1308 As above.
Stage Base 13.33 As per brown shrimp (Gallaway 2005).
Duration
(Days)
Low 10.42 As per brown shrimp (Gallaway 2005).
High 2525 As per brown shrimp (Gallaway 2005).
Early Daily Base 0.2429 Derived by Gallaway (2005).
Post Instantaneous
Larvae Mortality
Md)
Low 0.2429 As above.
High 0.2429 As above.
Stage Base 7 Derived by Gallaway {2005).
Duration
(Days)
Low 8 Derived by Gallaway {2005),
High 8 Derived by Gallaway (2005).
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Table D2. Continued.

Stage Variable Case Value Comments
Late Post- Daily Base 0.0320 As per brown shrimp (Gallaway 2005},
Larvae/Early nstantaneous
Juvenile Mortality (M d™')
Low 0.0234 As per brown shrimp (Gallaway 2005).
High 0.0554  As per brown shrimp (Gallaway 2005).
Stage Duration Base 61 As per brown shrimp (Gallaway 2005},
(Days)
Low 47 As per brown shrimp {Gallaway 2005).
High 72 As per brown shrimp (Gallaway 2005).
Sub Daily Base 0.0092  As per brown shrimp (Gallaway 2005).
Adul/Adult Instantaneous
Mortality (M d™*)
Low 0.0067 As per brown shrimp (Gallaway 2005).
High 0.0117 As per brown shrimp {Gallaway 2005).
Stage Duration Base 283.7 Balance of year given the above durations of
{Days) earlier life stages.
Low 3016 Balance of year given the above durations of

earlier life stages.

High 259.8 Balance of year given the above durations of
earlier life stages.
Total Base 1.5921 Ratio of F:M based upon Gazey et al. {19823,
Subadul/ b} = 0.0203 + 0.0334 = 0.61. Daily
Aduit Fishing instantaneous mortality (0.0092} x stage
Mortality duration (283.7 days) = 2.610. F = 0.61 (M) =
1.3939
Low 1.2326 Ratio of F:M based upon Gazey et al. (1982a,

b) = 0.0203 + 0.0334 = 0.61. Daily
instantaneous mortality {0.0067) x stage
duration (301.6 days) = 2.0207. F = 0.61 (M)
= 12326

High 1.8542 Ratio of F:M based upon Gazey et al. {1982a,
- b) = 0.0203 + 0.0334 = 0.61. Daily
instantaneous mortality (0.0117) x stage
duration {259.8 days) = 1.0340. F = .61 (M} =
1.8542.
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Table D3. Menhaden life history parameters and the basis for their selection.

Stage Vartable Case Value Reference & Comments
Egg Dally Base 1.044 EPA (2002)
Instantaneous
Mortality (M d™")
Low 1.044 EPA (2002)
High 6.21 EPA (2602)
Stage Duration Base 1.75 e”M (2005) and references therein. Mean
(Days) of 1.5 d for Gulf menhaden and 2.0 d for
yellow menhaden,
Low 1.5 &M (2005) and references therein, Lower
limit of Gulffyellow menhaden range.
High 2.0 eM (2005) and references therein. Upper
limit of Gulffyellow menhaden range.
Larvae Daily Base 0.059 &"M (2005) based on Deegan and
Instantaneous Thompson {1987} and Rose (2004; pers.
Mortality (M d™) comm.).
Low 0.0488 °M {2005) based on Deegan and
Thompson (1987) and Rose (2004 pers.
comm.).
High 0.077 e’M {2005) based on Deegan and
Thompson (1987) and Rose (2004; pers.
comm.).
Stage Duration Base 65 &°M (2005) based on Deegan and
(Days) Thompson (1987) and Rose (2004; pers.
comm.).
Low 60 &’M (2005) based on Deegan and
Thompson {1987} and Rose (2004; pers.
comm.}).
High 60 e’M (2005) based on Deegan and
Thompson (1987) and Rose {2004; pers.
comm.}.
Juvenile Daily Base 0.013 e’M (2005) hased on Deegan (1990).
1 Instantaneous
Mortality (M d™)
Low 0.013 &°M (2005) based on Deegan (1990),
High 0.013 e’M (2005) based on Deegan (1990},
Stage Duration Base 208.25 365 days minus the sum of earlier life-
{Days) history durations.
Low 3035 365 days minus the sum of earlier life-
history durations.
High 303 365 days minus the sum of earlier life-

history durations.
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Table D4. Stage, stage duration, and estimated mortality rates for the blue crab. See text for additional

information.

Stage Variable

Case

Value

Comments

Egg -

The egg stage is not retevant,
Females retain egg masses until they
hatch as zoea.

Larvae (Zoea-
Early Juvenile}

Daily instantaneous
mortality (M d™")

Base

Low

High

0.3000

0.3000

0.3000

EPA {2002) reported total mortality for
these stages combined was 13.8
citing Rose and Cowan (1293}. On
average these stages occur over a 46-
d period. Daily rate = 13.8 + 46 =
0.3000 ™.

As above,

As above.

Stage duration {days)

Base

Low

High

46

37

55

Pattillo et al. {1997) reports 31-43
days for development through seven
zoeal stages and that 6-12 days were
required to develop through the
megalopal stage to the first juvenile
crab stage. Thus, the total period was
from 37-55 days. We used the median
46 days as the base case.

Lower limit of Pattillo et al. (1997).

Upper limit of Pattillo et al. {1997).

Juvenile/Adults Daily instantaneous

Moriality (M d™")

Base

Low

High

0.0027

0.0027

0.0027

EPA (2002) used an annual rate of M
= 1.0 d"'which equates to a daily rate
of 0.002739.

As above.

AS above.

Stage duration (days)

Base

Low

High

319

328

310

Balance of year given the 46-d
duration of larval life stages.

Balance of year given the 37-d
duration of larval life stages.

Balance of year given the 55-d
duration of larval iife stages.
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Table D5. Red snapper life history parameters and the basis for their selection. See text for additional
information.

Stage Variable Case Value Reference & Comments
Egg Daily Base 0.4984 The value for Atlantic croaker in the Gulf of
Instantaneous Maxico from Diamond et al. {1999).

Mortality (M d")

Low 0.4984 The value for Atlantic croaker in the Gulf of
Mexico from Diamond et al. {1999).

High 0.4984 The value for Atlantic croaker in the Gulf of
Mexico from Diamond et al. (1993},
Stage Duration Base 1 e°M (2005) and references therein.
(Days)
Low 1 e®M (2005) and references therein.
High 1 e°M (2005) and references therein.
Larvae Daily Base 0.2413 Based upon the derivations of Gallaway &t
instantaneous al. (2007) with revisions by Gallaway et al.
Mortality (M d'") (2009)- see text. Total stage mortality of
6.7564 + 28 days = 0.2413 ¢,
Low 0.2599 Total stage mortality of 6.7564 + 26 days
(stage duration) = 0.2599 d™.
High 0.2252 Total stage mortality of 6.7564 + 30 days
{stage duration) = 0.2252 d™'.
Stage Duration Base 28 Rooker et al. (2004) estimated settlement
{Days}) at 16-19 mm or 27-30 d. Szedimayer and
Conti (1999) suggested metamorphosis
occurred at 18 mm or 28 d. The median of
28 d represents the base case.
Low 26 Lower estimate of Rooker et al. (2004) and
Szedlmayer and Conti (1999).
High 30 Lower estimate of Rooker et al. (2004) and
Szedimayer and Conti (1999).
Juvenile Daily Base 0.1196 Based on Gallaway (2005) and Rooker et
1 Instantaneous al. (2004), the estimated M = 0.1196 d"'.
Mortality (M d™")
Low 0.1010 Lower 95% Confidence Limit of Gallaway
(2005).
High 0.1382 Upper 95% Confidence Limit of Gallaway
{2005).
Stage Duration Base 38 Based upon the derivations of Galaway
(Days) {2005) - see text.
Low 36 Gallaway (2005).
High 40 Gallaway (2005).
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Table D5. Continued.

Stage Variable Case Value Reference & Comments
Juvenile Daily Base 0.0055 Based upon Gazey et al. (2008} estimate
2 Instantaneous of M = 2.0, Daily instantanecus mortality

Mortality (M d" M= 2.0 + 365 days = 0.0027 d’.
Low 0.0055 As above.
High 0.0055 As above.
Stage Duration Base 117 Defined as red snapper from 66 days old
(Days) to the end of the year. The period July-

December includes 183 days which
minus 66 days results in a stage duration

of 117 days.
Low 121 183 days - 62 days {(sum of low case
larvae and juvenile 1 stage durations} =
121 days.
High 113 183 days - 70 days {sum of high case
larvae and juvenile 1 stages) = 113 days.
Juvenile Daily Base 0.0032 Based a annual mortality rate M = 1.2
3 Instantaneous from Gazey et al. {2008). Dividing 1.2 by
Mortality (M d™") 365 days yields M = 0.0032 d™.
Low 0.0032 As above. |
High 0.0032 As above,
Stage Duration Base 181 Remainder of year 1.
(Days)
Low 181 Remainder of year 1.
High 181 Remainder of year 1.
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Table D6. Yellowfin tuna life history parameters and the basis for their selection. See text for additional
information.

Stage Vatiable Case Value Reference & Comments
Egg Daily Base 3.54 Based upon the temperature egg
Instantaneous mortality mode! of Pepin (1991).
Mortality
(Md")
Low 3.54 Same as above.
High 3.54 Same as above.
Stage Base 1.34 Margulies et al. (2007) found that the
Duration edg stage duration for yellowfin tuna
{Days) ranged from 20 to 28 h (0.83-1.17 d)

depending upon water temperature
(range 24.0-29.5°C). Harada et al.
(1980 cited in Pauley and Pullin 1988)
reported egqg stage durations of 1.34-
1.85 depending on temperature (range
18.7-30.1°C). Median value of these
values = 1.34.

Low 0.83 Lower fimit of studies described above
High 1.85 Upper limit of studies described above
Larvae Daily Base 0.33 Pooled M of yellowfin larvae collected in
Instantaneous the northern GOM (Lang et al. 1994,
Mortality Grimes and Lang 1992).
(Md")
Low 0.16 Low end of range reported by Lang et
al. {1994). Grimes and Lang (1992)
reported a lower M = 0.27 d"
High 0.45 High end of range reported by Lang et
al. (1990). Grimes and Lang (1992)
reported an upper M = 0.41 4"
Stage Base 16 Mean of Lang et al. {1990) and Wexler
Duration ' et al. (2007)
(Days)

Low 12 Low end of range reported by Lang et
al. (1994) for yeliowfin larvae collected
in the horthern GOM

High 20 Upper end of age range reported by
Waexler et al. (2007) for Pacific yellowfin
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Table D7. Red drum life history parameters and the basis for their selection. See text for additional

information,

Stage Variable Case Value

Reference & Comments

Egg Daily Base 0.4984
Instantanecus
Mortality (M d™)

Low 0.4984

High 0.4084

The value for Atlantic croaker in the Guif
of Mexigo from Diamond et al. {1999).

The value for Atlantic croaker in the Guif
of Mexico from Diamond et al. (1999).

The value for Atlantic croaker in the Guif
of Mexico from Diamond et al. (1999).

Stage Duration Base 1
(Days)

Low 1

High 1

e’M (2005) and references therein.

e’M (2005) and references therein.

e’M (2005} and references therein.

Larvae Daily Base (.3009
Instantaneous
Mortality (M d)

Low 0.2225

High 0.3793

Comyns (1997} best estimate of larval
mortality was 0.33 d”' (SE = 0.04) and
covered {arvae in the 2.0 to 5.0 mm size
range Rooker et al.{1999) estimated
juvenile mortality (8 to 20 mm) fo be
0.1365 d". Linear extrapolation between
0.33 d"'and 0.1365 d"'vields a dally value
of 0.23325 d 'which was used for larvae
between 6 and 8 mm. The composite of
the two rates yields a value of 0.3009 d™'.

Base value minus 95% Cl based upon a
SE of 0.04 (Comyns 1997).

Base value plus 95% Cl based upon a SE
of 0.04 (Comyns 19897).

Stage Duration Base 22
(Days)

Low 20

High 24

Rooker et al. {1999) observed peak
densities of benthic settlers occurred for
individuals 8-9 mm with corresponding
ages of 20 to 24 days. For the base case
we used the median value of 22 days at
settlement to approximate the base-case
tength of the plankton period.

Low end of the range observed by Rooker
et al. (1999).

High end of the range observed by
Rocker et al. (1999).
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Table D7. Continued.

Stage Variable

Case

Value

Reference & Comments

Juvenile Daiiy
1 Instantanecus
Mortality
(Md)

Base

Low

High

0.1365

0.134

0.138

This stage consists of early juveniles of red
drum that have settfed into benthic habitats
at an age of 20-24 d. In Figure 4 of Rooker et
al. {1999), settled juvenile 1 drum covers a
size range from 8 to 20 mm SL.. Observed Z
for this size range was 0.134 d”*in 1994 and
0.139 d™'in 1995 (Rooker et al.1999). We
used the mid-point between these two Z
values as the base-case estimate.
Agreement with e°m (2005).

Low Z observed by Rooker et al. (1999),
Agreement with e°m (2005).

High Z observed by Rooker et al, (1999).
Agreement with e’m (2005).

Stage Duration
(Pays)

Base

Low

High

18.5

17

20

This stage consisted of individuals up to 24
mm total length (Rooker et al. 1899). In
1984, 24-mm long fish were 41 days in age
whareas in 1995, 24-mm long red drum were
about 44 days old. Age at settlement in 1994
was about 21 days indicating a stage
duration of 20 days (Rooker st al.1999). In
1995, age at settlement was about 27 days,
indicating a stage duration of about 17 days.
For the base case we used a stage duration
of 18.5 days, the median value.

Low duration observed by Rooker et al.
(1999).

High duration observed by Rocker et al.
(1999).
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Table D7. Continued.

Stage Variable Case Value Reference & Comments
Juvenile Daily Base 0.0094 Median mortality rates derived from
2 Instantaneous Figure 4 in Scharf (2000) for Galveston

Mortality (M d')

Low 0.0079

High 0.0108

and Sabine Lake Estuaries, Dec.-Mar.

Galveston Bay mortality rate {Dec.-Mar.)
derived from Figure 4 in Scharf (2000).

Sabine Lake mortality rate (De-Mar.)
derived from Figure 4 in Scharf (2000),

Stage Duration Base 168.5
(Days)

Low 172

High 165

Based on Scharf (2000) we estimated this
stage extends from October-March (180
days). Above we have accounted for
41.5days {from egg to the juvenile 1
stage) which occur in the
September/Qctober period. Thus, for the
base case, the duration of the juvenile 2
stage is estimated at 168.5 days (180
days-11.5 days in October).

In the low case above, egg to the juvenile
1 stage oceurs over a total of 38 days
(September plus 8 days in October). The
stage duration for the low duration
estimate is 180 days-8 or 172 days.

Similarly, the high case described above
extends for 45 days. This would allocate
15 days in Qctober; 180-15 yields a stage
duration of 165 days.

Juvenile Daily Base 0.0018
3 Instantanecus
Mortality (M d™)

Low 0.0018

High 0.0018

Red drum stock assessment value used
for age 0 (Porch 2000).

Red drum stock assessment value used
for age 0 {Porch 2000).

Red drum stock assessment value used
for age 0 (Porch 2000).

Stage Duration Base 165
(Days)
Low 155

High 155

Remainder of year 1.
Remainder of year 1.

Remainder of year 1.
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Table D8. Adult red drum annual mortality rates, Source EPRI (2005).

Parameter/Age E\/Esotret'gt?ty
M (annual)
Ages 1-5 0.23
Ages 6-12 0.13
F (annual)
Age 1 0.16
Age 2 0.49
Age 3 0.62
Age 4 0.63
Age 5 0.39
Age 6+ 0.39
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Table D9. Bay anchovy life history parameters and the basis for their selection.

Stage Variable Case Value Reference & Comments
Egg Daily Base 1.044 e”M (2005} citing EPRI (2005) and PSEG
instantaneous (1999).
Mortality (M d™")
Low 0.69 e’M (2005) citing Houde (1987).
High 1.94 e’M (2005) citing Lowestoft (2000; actual
citation is Bunn et al. 2000},
Stage Duration Base 1 &°M (2005) citing Robinette (1983} and
(Days) Houde (1987).
Low 1 eM {2005} citing Robinette (1983) and
Houdse {1987).
High 1 e’M (2005) citing Robinette (1983) and
Houde (1987).
Larvae Daily Base 0.2059 e“M (2005) ¢iting Houde (1987).
Instantaneous
Mortality (M d"™")
Low 0.1804 &”M (2005) citing Houde (1987).
High 0.231 &M (2005) citing EPRI (2005) and PSEG
{1999).
Stage Duration Base 34 &M (2005) citing EPRI (2004) and PSEG
{Days} (1999).
Low 30.63 &?M (2005) citing EPRI (2005) and PSEG
{1999).
High 34 e’M (2005) citing EPRI (2005) and PSEG
(1999).
Juvenile Daily Base 0.004 o”M (2005) citing EPRI {2005) and PSEG
1 Instantaneous {1999).
Mortality (M d™")
Low 0.004 &’M (2005) citing EPRI (2005) and PSEG
{(1999).
High 0.01 &M (2005) citing Houde (1987).
Stage Duration Base 330 365 days minus the sum of earlier life-
{Days) history durations.
Low 3334 365 days minus the sum of earlier life-
history durations.
High 330 365 days minus the sum of earlier life-

history durations.

LGL Ecological Research Associates, Inc.
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Cooling Water Intake Structure Biological Basefine Study

INTRODUCTION

The Offshore Operators Committee’s (OOC) Contract 2008-08-01 with LGL
Ecological Rescarch Associates, Inc. (LGL) was modified to enable LGL to conduct
additional analyses of SEAMAP data as an addendum to the OOC Task 1 Final Project
Report “Guif of Mexico Cooling Water Intake Structure: Source Water Biological Baseline
Characterization Study”. The objectives of the analyses were to 1) calculate average total
density for fish eggs and larvae (all species combined) by a) fishery zone and b) for larvae,
total density by month of sampling and zone; and 2) provide species composition and
density data for each geographic zone based upon data for all years combined. Background
data for these analyses can be found in the referenced final report.

It should be noted that the analyses describing total larvae and egg densities by region
~and total larval densities by month and region are based on the same sample screening
protocols specified in the final report referenced above (samples where both cggs and
larvae were analyzed from a sample) whereas all available samples were used to calculate
an alternative mean total larvac density estimate by region and to describe the species
composition data for each region.

The results of the Source Water Biological Baseline Study were presented to the
Environmental Protection Agency on 24 August 2009, and the draft final report was
subjected to additional review following this presentation. The major comments included
the request that the assessment report describe and evaluate those species most susceptible
to impingement and entrainment and provide more information regarding impacts on
forage species. The original Addendum provided data listings enabling the requested
assessments, however, we have revised the Addendum to specifically address these issucs
as requested.

METHODS

A list of the 10 most abundant species was extracted from the overall taxa lists for each
of the regions in which new developments are expected (C4, C5, W4, W5). Forage specics
were identified within these lists. The approach outlined by Gallaway et al. (2007) was
used to assess the overall impacts of the new facilitics on ecosystem components for which
the life-history data were insufficient to support species-specific modeling approaches. In
this approach, estimated entrainment losses arc compared with the “population” of a larger
“reference parcel” or control volume of water, This approach was originally developed to
estimate effects of entrainment for proposed Ocean Thermal Energy Conversion projects
(e.g., Sinay-Friedman and Reitzel 1980). The control volume consists of one-half the
volume of a cylinder of water having a radius equivalent to the distance within
approximately 1-day’s transport of the intake based upon estimates of median current speed
for the region. For the four regions where new development is expected the median current
speed for winter and summer are on the order of 0.36 m/s and 0.31 m/s, respectively
(Minerals Management Service Gulf of Mexico Region Visual No. 6: Oceanography,
Accidents and Vegetation, 1983). The depth of the control volume cylinder was set at 200
m which corresponds to the maximum depth of SEAMAP sampling in deep water in these
regions. Most of the new intake structures would also be expected to be located within this

LGL Ecological Research Associates, Inc. Addendum {(Revised) 2
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depth range or shallower. One-half the Control Volume (C.V.) was calculated in million m®
for each season:

CV.= nrth x05
1,000,000

where r = radius was estimated in m based on median seasonal current speeds, and h
(height) was set at 200 m. Based on the median current speed of 0.36 m/s, the cylinder
radius r for the winter season was 31,104 m. For the summer season, r was 26,784 m based
on the reported median current speed 0.31 m/s.

For assessment purposes, we took the conservative approach of treating the cumulative
total intake of all facilities as if it werc a single, large facility. In fact, the individual intakes
would each be assessed against the control volume and summed. The total daily seawater
use in million

m’ was divided by one-half of the control volume of waster passing by the site each
day. Assuming a uniform density distribution, the estimated numbers of ichthyoplankton
removed on a daily basis would be equivalent to the water-use estimates (i.c., the
ichthyoplankton population in the control volume would be estimated by multiplying the
volume by the same density cstimates used in the entrainment analysis).

RESULTS

Larval and egg densities by region and month-by-region are shown by Tables [-3.
These estimates are restricted to only those collections where both eggs and larvac were
analyzed for a sample. In many samples, egg counts were not made. On a regional basis
(Table 1), sample sizes (i.c., tows) ranged from a low of 51 (Region W4) to a high of 778
(Region C5). Both the larvae and egg density data show pronounced decrease with depth in
all regions, especially in depth zones 4 and 5 as compared to shallower depths. Most or all
new CWIS facilities identified in the final report are projected to occur in depth zones 4
and 5.

Larvae (Table 2) and egg density (Table 3) by month and zone for depth zones where
new CWIS development is projected are not only low, as compared to shallower depths,
but reflect a much smaller level of monthly variation as compared to that seen for shaliower
depths. For example, mean larval density in the C1 Region ranged from 0.12 larvae/m’ in
February to 23.1 larvae/m® in July. In contrast, larval density in CS5 ranged from 0.13 m
March to a high of 0.77 in September Monthly egg densities in C1 ranged from 1.0 egg/m’
in December to about 20 eggs/m in March and August (see Table 3). Egg densities in C5
never reached as high as 1 egg/m’.

Table 4 provides larvae density results based on all samples collected. Sample size by
region ranged from 98 (W4) to 1,036 (CS) tows. Larval density patterns werc similar to
those estimated from the more restricted dataset (compare Table 1 and Table 4). Larval
density based on the total samples available show pronounced decreases with depth,
especially in depth zones 4 and 5 as compared to shallower depths.

LGL Ecological Research Associates, Inc. Addendum (Revised) 3
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The most abundant taxa in zones where new CWIS development is expected to occur
are dominated by forage species (Table 5, complete specics composition data are provided
in Attachment 1). Region C5 reflected the highest number of total taxa (457) and the top 10
species comprised over 64% of the total density. The number of taxa in each region ranged
from a low of 244 (W4) to the high of 457 taxa obsecrved for Region C5. In all cases, the
top 10 species comprised over 60% of the total density. Lanternfishes (Myctophidae) and
bristlemouth (Gonostomatidae) typically dominated the forage species represented in the
collections.

Lanternfishes are small, decp sea fish that are represented by 246 species in 33 genera
and occur in occans worldwide. They are named after their conspicuous use of
bioluminescence. Alexander (1998) suggests that lanternfishes account for as much as 65%
of all deep sca fish biomass. Global biomass is estimated to be on the order of 550 to 660
million metric tonnes, several times the entire world’s fisheries catch.

Larval myctophids are non-migratory, spending day and night in near surface watcrs
(Ahlstrom 1959). Diel vertical migration is first evident at or shortly after metamorphosis
and usually persists throughout the remaining life of the fish (Frost and McCrone 1979).
During the day, myctophids stratify in dense aggregations deep in the water column (e.g.,
> 300 m). These aggregations are sufficiently dense to cause deep sound-scattering layers
(e.g., Baird et al. 1975, McCartney 1976). At night, they rise to surface water layers
presumably to feed on zooplankton. Bristlemouths exhibit similar diel vertical migrations.
Although the eggs and larvae occur in surface waters during both day and night, larger
specimens are found between 25 to 325 m at night and from 425 to 725 m during the day
(Lancraft et al. 1988). In each case, the migratory life stages are larger than the sizes that
would be expected to be subject to entrainment and/or impingement.

During winter we estimate that 303,936 million m’ of water would pass our
hypothetical facility cach day. This hypothetical facility represents the fotal water use by ali
the projected new facilities which are estimated to withdraw a total of 1.16969 million m’
of water each day. During winter, the new CWIS facilities would remove 0.00038% of the
population passing by the “facility” each day. During summer, the impact would be to
remove 0.00052% of the population passing by the facility each day. The projected impacts
are small.

CONCLUSIONS

The ichthyoplankton densitics in the geographical regions where new CWIS
development is projected are low compared fo densities seen in shallower depths. This
observation coupled with the projected total water use for all new facilities combined
suggest a very small impact overall, especially when compared to the impacts projected for
coastal LNG facilities proposed for the Gulf. The combined effects from the seven
proposed coastal LNG facilities were all deemed to constitute minor adverse impacts. The
level of projected impacts from proposed coastal LNG facilities led us to classify the
potential impacts from new CWIS facilities as being “very small”.
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Cooling Water Intake Structure Biological Baseline Study

Table 2. Larval Density by Region and Month.

Region Month Larval Density (Mean) | Sample Count STD SE CI (95%)
C1 2 0.12 3.00 0.16 0.09 0.18
C1 3 446 36.00 10.57 1.76 345
Cl 4 1.10 3.00 1.16 0.67 1.31
Cl 5 1.45 8.00 1.29 0.46 0.89
Cl 6 5.10 36.00 6.60 1.10 2.16
C1 7 23.10 71.00 40.31 478 9.38
C1 8 4.59 16.00 4.67 1.17 229
C1 9 10.40 82.00 23.08 2.55 499
C1 10 3.07 26.00 3.05 0.60 1.17
Ci 11 1.19 53.00 1.25 0.17 0.34
C1 12 1.28 18.00 1.03 0.24 0.48
C2 2 0.87 5.00 0.66 0.29 0.58
C2 3 3.53 50.00 3.55 0.50 0.99
C2 4 1.35 9.00 1.64 0.55 1.07
C2 5 541 2.00 6.28 4.44 8.70
c2 6 3.40 81.00 247 0.27 0.54
C2 7 6.91 108.00 9.93 0.96 1.87
Cc2 8 3.59 28.00 3.77 0.71 1.40
Cc2 S 4.94 155.00 4.1 0.38 0.74
C2 10 5.33 44.00 12.76 1.92 377
C2 il 5.70 108.00 8.47 0.81 1.60
C2 12 4.88 10.00 6.20 1.96 3.85
C3 i 2.03 18.00 221 0.52 1.02
C3 2 1.65 7.00 0.74 0.28 0.55
C3 3 1.77 24.00 1.74 0.36 0.70
C3 4 1.59 17.60 1.69 .41 (.80
C3 5 1.50 84.00 0.95 0.10 0.20
C3 6 1.24 30.00 1.35 0.25 0.48
C3 7 2.33 19.00 0.98 0.23 0.44
C3 8 1.47 19.00 1.51 0.35 0.68
C3 9 1.70 113.00 1.42 0.13 0.26
C3 10 1.97 10.00 1.74 0.55 1.08
C3 11 1.89 46.00 1.79 0.26 0.52
C3 12 1.01 4.060 0.72 0.36 0.71
C4 1 0.61 3.00 0.03 0.02 0.03
C4 3 0.13 1.00 | NA NA NA
C4 4 0.50 5.00 0.26 0.12 0.23
C4 5 0.66 40.00 0.40 0.06 0.12
Ca 6 0.80 11.00 0.94 0.28 0.55

LGL Ecological Research Associates, Inc.
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Table 2. Continued.

Region Month Larval Density (Mean) | Sample Count STD SE CI (95%)
C4 7 1.14 6.00 0.79 0.32 0.63
Cc4 8 0.45 17.00 0.31 0.07 0.15
Cc4 9 0.92 29.00 0.74 0.14 0.27
C4 10 0.33 4.00 0.23 0.12 023
c4 11 0.39 8.00 0.15 0.05 0.11
Cc4 12 0.18 2.00 0.02 0.01 0.03
Cs 1 0.36 23.00 0.16 0.03 0.07
C5 2 0.62 9.00 0.20 0.07 0.13
Cs 3 0.13 2.00 6.09 0.06 0.12
Cs 4 0.39 208.00 0.25 0.02 0.03
C5 5 0.45 441.00 0.30 0.01 0.03
Cs 6 037 56.00 0.28 0.04 0.07
C5 7 0.35 3.00 0.09 0.05 0.10
Cs 8 0.21 13.00 0.10 0.03 0.05
Cs 9 0.77 5.00 0.40 0.18 0.35
Cs 10 0.15 6.00 0.11 0.04 0.09
C5 it 0.27 1.00 | NA NA NA
C5 12 0.31 11.00 0.16 0.05 0.09
Bl 5 10.69 2.00 11.87 8.40 16.45
El 6 0.80 2.00 0.89 0.63 1.23
El 7 4.61 2.00 433 3.06 6.00
El 8 8.71 9.00 922 3.07 6.03
El 9 3.89 92.00 3.85 0.40 0.79
El 10 3.54 21.00 2.70 0.59 1.15
E2 5 4.17 17.00 5.76 1.40 2.74
E2 6 1.78 13.00 1.46 0.40 0.79
E2 7 2.17 8.00 1.76 0.62 1.22
E2 8 3.31 23.00 221 0.46 0.91
E2 9 3.89 158.00 433 0.34 0.68
E2 10 3.14 69.00 293 0.35 0.69
E3 3 1.12 1.00 | NA NA NA
E3 4 0.70 25.00 045 0.09 0.18
E3 5 0.94 77.00 0.92 0.10 020
E3 6 0.88 19.00 0.68 0.16 031
E3 7 0.42 7.00 0.32 0.12 0.24
E3 8 1.18 15.00 0.98 0.25 0.50
E3 9 1.53 108.00 1.40 0.13 0.26
E3 10 1.12 53.00 1.00 0.14 0.27
E3 12 3.76 1.00 | NA NA NA
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Table 2. Continued.

Region Month Larval Density (Mear) | Sample Count STD SE CI(95%)
E4 3 0.74 6.00 0.98 0.40 0.79
E4 4 0.70 74.00 0.47 0.05 0.11
E4 5 0.55 159.00 0.35 0.03 0.05
E4 6 0.57 30.00 0.41 0.07 0.15
E4 7 0.34 5.00 0.18 0.08 0.16
E4 8 0.39 30.00 0.27 0.05 ¢.10
E4 9 0.66 28.00 0.45 0.09 0.17
E4 10 0.40 22.00 .30 0.06 0.12
E3 4 0.38 112.00 0.20 0.02 0.04
ES 5 0.40 207.00 0.33 0.02 0.05
ES 6 0.41 26.00 0.30 0.06 0.1
E5 7 0.10 1.00 | NA NA NA
E5 8 0.46 2.00 0.33 0.24 0.46
E5 10 0.60 2.00 0.40 0.28 0.55
E3 12 0.19 2.00 0.24 0.17 0.33
wi 6 5.01 20.00 5.83 1.30 2.56
W1 7 6.82 26.00 9.04 1.77 348
Wl 8 4.74 8.00 4.75 1.68 3.29
w1 9 9.33 72.00 14.88 1.75 344
Wi 10 2.67 33.00 2.86 0.50 0.98
Wi 11 5.03 5.00 6.74 3.01 5.90
w2 2 37 1.00 | NA NA NA
W2 4 1.66 1.00 | NA NA NA
W2 -5 2.38 13.00 2.18 0.60 1.18
W2 6 473 81.00 379 0.42 0.83
W2 7 4.76 58.00 8.37 1.10 2.15
W2 8 2740 26.00 104.31 2046 40.10
w2 9 6.65 128.00 6.60 0.58 1.14
w2 10 4,35 96.00 5.32 0.54 1.06
W2 il 4.62 9.00 242 0.81 1.58
W3 i 1.13 10.00 0.28 0.09 0.17
W3 2 1.04 4.00 0.38 0.19 0.37
W3 4 1.20 6.00 0.84 0.34 0.07
W3 5 2.01 35.00 1.74 0.29 0.58
W3 6 2.62 40.00 1.97 0.31 0.61
W3 7 2.65 36.00 2.87 0.48 0.94
W3 8 272 17.00 2.11 0.51 1.00
W3 9 2.82 104.00 2.36 0.23 0.45
W3 10 2.57 55.00 2.87 0.3% 0.76
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Table 2. Continued.

Region Month Larval Density (Mean) | Sample Count STD SE CI (95%)
w3 11 0.99 3.00 0.67 0.39 0.76
W4 1 0.51 3.00 0.19 0.11 0.21
W4 2 0.83 2.00 0.33 0.24 0.46
w4 4 6.37 2.00 0.36 0.25 0.50
w4 5 0.51 17.60 0.37 0.09 0.18
W4 6 0.69 2.00 0.39 0.27 0.53
w4 7 0.27 12.00 0.16 0.05 0.09
W4 8 0.23 2.00 0.05 0.03 0.07
w4 9 0.79 11.00 0.56 0.17 0.33
W5 i 0.29 17.00 0.12 0.03 0.06
W35 2 0.43 5.00 0.14 0.06 0.12
W5 4 0.31 27.00 0.24 0.05 0.09
W5 5 0.47 87.00 0.26 0.03 0.05
W5 6 0.52 3.00 0.23 0.13 0.26
W5 7 0.18 2.00 6.05 0.04 0.07
W5 8 0.54 2.00 0.23 0.16 0.32
W5 9 0.30 2.00 0.02 0.02 0.03
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Table 3. Egg Density by Region and Month.

Region Month Egg Density (Mean) | Sample Count STD SE CCI{95%)
Cl1 2 1.89 3 2.54 1.47 2.87
Cl 3 20.65 36 30.76 5.13 10.05
Cl 4 10.83 3 5.28 3.03 598
ClI 5 1.88 8 2.97 1.05 2.06
Cl1 6 16.17 36 32.36 5.39 10.57
C1 7 13.87 71 18.51 220 431
C1 8 20.99 16 4323 10.81 21,18
Cl 9 7.56 82 17.73 1.96 3.84
C1 10 3.33 26 7.10 1.39 273
Cl 11 3.49 53 14.20 1.95 3.82
C1 12 1.00 18 2.04 0.48 0.94
C2 2 17.43 5 21.30 953 18.67
C2 3 5991 50 29.23 413 8.10
C2 4 5.42 9 6.19 2.06 404
C2 5 19.92 2 25.18 17.81 34.90
C2 6 3.48 81 3.59 0.40 0.78
C2 7 5.58 108 8.87 0.85 1.67
C2 8 3.79 28 4.00 0.76 148
C2 9 2.89 155 5.67 0.46 0.89
C2 10 222 44 5.08 0.77 1.50
2 11 1.93 108 245 024 046
cz - 12 8.54 10 12.34 3.90 7.65
C3 1 0.81 18 T 0.64 0.15 0.30
C3 2 0.78 7 0.71 0.27 0.52
C3 3 1.24 24 1.48 0.30 0.59
C3 4 0.56 17 0.30 0.07 0.14
C3 5 0.63 84 0.53 0.06 0.11
C3 6 0.62 30 0.75 0.14 0.27
C3 7 0.90 19 1.15 0.26 0.52
C3 8 0.76 19 0.7 0.16 0.32
C3 9 0.47 113 0.57 0.05 0.10
C3 10 0.77 10 1.47 0.47 091
C3 11 0.51 46 0.74 0.11 0.21
C3 12 0.25 4 0.20 0.10 0.20
C4 1 0.12 3 0.13 0.08 0.15
C4 3 0.31 1| NA NA NA
C4 4 0.19 5 0.18 0.08 0.16
C4 5 0.19 40 0.41 0.06 0.13
C4 6 0.41 11 0.68 0.20 040
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Cooling Water Intake Structure Biological Baseline Study

Table 3. Continued.

Regicn Month Egg Density (Mean) { Sample Count STD SE CI (95%)
C4 7 0.26 6 0.18 0.07 0.15
C4 8 0.18 17 0.20 0.05 0.10
C4 9 0.36 29 1.31 0.24 048
C4 10 0.08 4 0.07 0.04 0.07
C4 11 0.06 8 0.11 0.04 0.08
C4 12 0.22 2 0.16 0.11 6.22
C3 1 0.07 23 0.15 0.03 0.06
C5 2 0.61 9 1.68 0.56 1.10
C3 3 0.21 2 0.01 0.0 0.02
C5 4 0.07 208 0.10 0.01 0.01
Cs 5 0.07 441 0.08 0.00 0.01
C5 6 (.06 56 0.05 0.01 0.01
C5 7 0.07 3 0.03 0.02 0.04
C5 8 032 13 0.55 0.15 0.30
C5 9 0.04 5 0.03 0.01 0.02
C5 10 0.03 6 0.02 0.01 0.02
C5 11 0.01 1] NA NA NA
C5 12 0.10 1 0,24 0.07 0.14
El 5 11.57 2 12.73 9.60 17.65
El 6 12.74 2 13.33 9.42 18.47
El 7 37.73 2 51.95 36.73 71.99
El 8 8.51 9 8.60 2.87 5.62
Ei 9 3.26 92 5.79 0.60 1.18
El 10 1.14 21 1.03 0.23 0.44
E2 5 4.30 17 6.09 1.48 2.89
E2 6 1.96 i3 2.06 0.57 1.12
E2 7 1.87 8 1.71 0.61 1.19
E2 8 4.01 23 7.00 1.46 2.86
E2 9 3.06 158 11.81 0.94 1.84
E2 10 1.09 69 0.86 0.10 0.20
E3 3 1.23 1| NA NA NA
E3 4 0.64 25 0.75 0.15 0.30
E3 5 0.40 77 0.33 0.04 0.07
E3 6 0.37 19 0.21 0.05 0.09
E3 7 0.39 7 0.24 0.09 0.18
E3 8 0.61 15 0.53 0.14 0.27
E3 9 0.35 108 0.37 0.04 0.07
E3 10 030 53 0.29 0.04 0.08
E3 12 0.18 1| NA NA NA
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Cooling Water Intake Structure Biological Baseline Study

Table 3. Continued.

Region Month Egg Density (Mean) | Sample Count STD SE CI (95%)
E4 3 0.30 6 0.35 0.14 0.28
E4 4 0.18 74 0.32 0.04 0.07
E4 5 0.29 159 1.15 0.09 0.18
F4 6 0.20 30 0.30 0.06 0.11
E4 7 06.07 5 0.06 0.03 0.05
E4 8 0.13 30 0.21 0.04 6.07
E4 9 023 28 0.35 0.07 0.13
E4 10 0.12 22 0.18 0.04 0.08
ES 4 0.05 112 0.06 0.01 0.01
ES5 5 0.06 207 0.09 0.01 0.01
E5 6 0.06 26 0.05 0.01 0.02
E5 7 0.13 11 NA NA NA
E5 8 0.02 2 0.00 0.00 0.00
E5 10 6.02 2 0.02 0.01 0.03
E3 12 0.02 2 0.03 0.02 0.04
W1 6 6.84 20 6.34 1.42 2.78
Wi 7 11.03 26 20.49 4.02 7.88
w1 8 12.62 8 28.93 10.23 20.05
Wi 9 6.20 72 12.65 1.49 292
wi 10 0.80 33 1.17 0.20 0.40
Wi 11 3.39 5 5.67 2.54 4,97
w2 2 0.60 1 | NA NA NA
w2 4 0.61 1 NA NA NA
W2 5 251 13 0.90 0.25 0.49
W2 6 3.36 81 2.44 0.27 0.53
w2 7 3.28 58 592 0.78 1.52
W2 8 21.79 26 84.32 16.54 3241
w2 9 2.28 128 2.51 0.22 0.44
w2 10 0.98 96 1.72 0.18 0.34
w2 11 1.11 9 0.75 0.25 0.49
W3 1 0.22 10 0.11 0.04 0.07
W3 2 0.32 0.17 0.09 0.17
W3 4 0.53 0.38 0.16 0.31
w3 5 0.66 35 0.54 0.09 0.18
W3 6 0.68 40 0.72 0.11 0.22
w3 7 0.63 36 1.19 0.20 ¢.39
W3 g 0.54 17 0.44 011 0.21
W3 9 0.44 104 0.40 0.04 0.08
W3 10 0.20 55 0.17 0.02 0.05
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Cooling Water Intake Structure Biological Baseline Study

Table 3. Continued.

Region Menth Egg Density (Mean) | Sample Count STD SE CI (95%)
W3 11 0.1t 3 0.07 0.04 0.08
W4 1 0.04 3 0.04 0.02 0.04
W4 2 0.06 2 0.04 0.03 0.05
W4 4 0.07 2 0.02 0.01 0.03
w4 5 0.12 17 0.17 0.04 0.08
W4 6 0.10 2 0.11 0.08 0.15
w4 7 0.17 12 0.18 6.05 0.10
W4 8 0.02 2 0.02 0.02 0.03
W4 9 0.12 11 6.13 0.04 0.08
W5 1 0.03 17 0.02 0.01 0.01
W5 2 0.02 5 0.01 0.00 0.01
W3 4 0.08 27 0.06 0.01 0.02
W5 5 0.08 87 0.21 0.02 0.04
W3 6 0.20 3 0.22 0.13 0.25
W5 7 0.38 2 0.21 0.15 0.29
W3 8 0.01 2 0.00 0.00 0.00
W3 9 0.09 2 0.05 0.04 0.07
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Cooling Water Intake Structure Biological Baseline Study

Table 4. Mean larval density by region based on all samples.

Region Sum Of Densities No of Trawls Average Density
Cl 5466.25 1029 5.31219
C2 4730.58 1167 405362
C3 861.80 577 1.49359
C4 120.56 193 0.62468
C5 384.15 1036 0.37081
El 1275.07 229 5.56798
E2 1829.43 471 3.88415
E3 494.00 434 1.13825
E4 248.65 475 0.52348
ES 151.52 419 0.36163

Wi 1614.33 253 6.38074
W2 347034 596 5.82272
Wi 1064.04 430 2.47450
w4 48.63 98 6.49618
W5 91.07 220 0.41394
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Cooling Water Intake Structure Biological Baseline Study

Table 5. Most abundant species in zones where new development is expected to occur.

Region Taxa Common Name Density %l;r:::‘gr?tﬁ;? Ecosystem
g {No.m™) Totat Catch Designation
C4 Engraulidae Anchovies 0.06012 9.6 | Forage
321 Total Taxa | Myctophidae Lanternfishes 0.05834 19.0 { Forage
Bregmaceros spp. Codlets 0.04864 26.8 | Forage
Diaphus spp. Lanternfishes 0.04681 34.2 { Forage
Gonostomatidae Bristlemouths 0.04501 41.4 { Forage
Gobiidas Gobies 0.03966 47.8
Unidentified Fish 0.03274 53.0
Synodontidae Lizardfishes 0.01990 56.2 | Forage
Hygophum spp. Lanternfishes 0.01511 58.6 | Forage
Maurolicus muelleri | Mueller's 0.01506 61.1 | Forage
bristlemouth
Total Mean Density 0.62468
All taxa
. Cumulative
Region Taxa Common Name z:r)\leonfr:t% Percent of gggi?;):\s;ﬁcrﬂw
) Total Catch
Cc5 Myctophidae Lanternfishes 0.05194 14.0 | Forage
457 Total Taxa | Diaphus spp. Larternfishes 0.04056 249 | Forage
Gonostomatidae Bristlemouths 0.02592 31.9 | Forage
Hygophum spp. Lanternfishes 0.02566 38.9 | Forage
Unidentified Fish 0.02382 45.3
Cyclothone spp. Bristlemouths 0.01906 50.4 | Forage
Myctophum spp. Lanternfishes 0.01606 54.8 | Forage
Bregmaceros spp. Codlets 0.01248 58.1 | Forage
Benthosema spp. | Lanternfishes 0.01189 61.3 | Forage
Notolychnus Lanternfish 0.00778 634 | Forage
valdiviae
Total Density All 0.37075
taxa
Region Taxa Common Name Density %ngfzzi;? Ecosystem
9 {(No.m"} Total Catch Designation
w4 Myctophidae Lanternfishes 007271 14.7 | Forage
244 Total Taxa | Bregmaceros spp. Codlets 0.04734 24.2 | Forage
Gobiidae Gobies 0.03816 319
Diaphus spp. Lanternfishes 0.03441 38.8 | Forage
Hygophum spp. Lanternfishes 0.02711 44.3 { Forage
Gonostomatidag Bristtemouths 0.02587 49.5 | Forage
Unidentified Fish 0.01951 53.4
Cyclothone spp. Bristlemouths 0.01935 57.3 | Forage
Engraulidae Anchovies 0.01616 60.6 | Forage
Scombridas Mackerels 0.01013 62.6
Total Density All 0.49618
taxa
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Cooling Water Intake Structure Biological Baseline Study

Table 5. Continued.

. Cumulative
Region Taxa Common Name Densnty Percent of Ecqsystc-?m
{No.m") Total Catch Designation
w5 Myctophidae Lanternfishes 0.05889 14.2 | Forage
284 Total Taxa | Gonostomatidae Bristlemouths 0.03183 219 | Forage
Bregmaceros spp. Codlets 0.02976 29.1 | Forage
Cyclothone spp. Bristlemouths 0.02631 35.5 | Forage
Diaphus spp. Lanternfishes 0.02392 412 | Forage
Unidentified Fish 0.02049 46.2
Gobiidae Gobies 0.01978 51.0
Hygophum spp. Lanternfishes 0.01523 54.6 § Forage
Benthaosema spp. | Lanternfishes 0.01279 57.7 | Forage
Notolychnus Lanternfish 0.01124 80.5 | Forage
valdiviae
Total Density All 0.41393
taxa
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